Monatshefte für Chemie 111, 143-158 (1980)

Monatshefte für Chemie

© by Springer-Verlag 1980

Synthese von (\pm) -Porantherilidin

Edda Gössinger

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 16. August 1979. Angenommen 25. September 1979)

Synthesis of (\pm) -Porantherilidine

The synthesis of the title compound is described in detail.

[Keywords: (\pm) -Porantherilidine, synthesis; Stereoselective 1,3-dipolar addition]

Einleitung

Porantherilidin (18) ist ein Alkaloid der australischen Wolfsmilchart Poranthera corymbosa. Es wurde von Lamberton et al. isoliert¹. Seine Struktur wurde mit Hilfe spektroskopischer Daten und chemischer Reaktionen¹ sowie einer Röntgenstrukturanalyse² festgelegt. Dabei fand man, daß Porantherilidin ein Chinolizidinderivat mit vier chiralen Zentren ist. Drei dieser Zentren befinden sich im Chinolizidinring, das vierte liegt in der Seitenkette. Dieser mit Benzoesäure veresterte 1,3-Aminoalkohol erscheint nicht nur aus chemischer Sicht interessant: Die Strukturdetails seines Hydrolyseproduktes (Porantherilidinalkohol) weisen charakteristische Gemeinsamkeiten mit Substanzen mit spezifischer, neurophysiologischer Wirkung auf (Histrionicotoxine³, Dihydroadalin^{4,5}). Auch im Porantherilidinalkohol liegt der Stickstoff der 1,3-Aminoalkoholeinheit in einem sechsgliedrigen Ring. Die Molekel enthält ebenfalls eine fünfgliedrige Seitenkette, und die Gesamtgröße des Moleküls liegt in der Größenordnung der beiden anderen bicyclischen Systeme.

Synthese

Für den synthetischen Aufbau des Porantherilidins schien der Weg über ein 2,6-trans-dialkylsubstituiertes Piperidinderivat, wie ihn Lamberton et al.¹ auch für die Biosynthese vermuten, am günstigsten. Das Studium der Literatur zeigte aber, daß das so einfach erscheinende Problem der Herstellung eines 2,6-*trans*-dialkylsubstituierten Piperidins bisher nur unbefriedigend gelöst ist⁶.

Eigene Versuche zeigten, daß Addition eines Alkens mit endständiger Doppelbindung an ein 6-alkylsubstituiertes Piperidein-1-*N*oxid ausschließlich bzw. mit sehr hoher Selektivität zu einem Isoxazolidinderivat führt, das bei reduktiver Öffnung der N—O-Bindung

in ein 2,6-trans-dialkylsubstituiertes Piperidin übergeführt werden kann*. Diese Methode bietet neben der Darstellung des 2.6-transdisubstituierten Piperidins für die angestrebte Synthese den zusätzlichen Vorteil des Einbaus einer Hydroxylgruppe in die erwünschte Position der Seitenkette. Die räumliche Lage der Alkylgruppe an C-5 des Isoxazolidinringes bezogen auf die Substituenten an C-3 desselben Ringes wurde ebenfalts an Modellverbindungen untersucht. Dabei zeigte sich, daß der Einbau ausschließlich bzw. überwiegend einer exo-Addition des Alkens an den 1.3-Dipol entspricht**. Die aufgezeigte Reaktionsfolge legt bereits drei der vier Chiralitätszentren relativ zueinander fest. In dem durch exo-Addition erhaltenen Produkt ist jenes Kohlenstoffatom, das mit dem Sauerstoffatom verbunden ist, epimer zu dem entsprechenden C-Atom des Porantherilidins. Daher muß die Veresterung mit Benzoesäure unter Inversion durchgeführt werden: Von den hierfür möglichen Methoden schien die Methode nach Mitsunobu et al.⁸ am günstigsten, weil neben Triphenylphosphan und

 $[\]ast$ In einer gesonderten Publikation soll darüber ausführlicher berichtet werden.

^{**} exo-Addition wurde angenommen, weil bei der Addition des sperrigen 3,3-Dimethylbuten-1 an verschiedene Piperidein-1-N-oxide jeweils nur ein Additionsprodukt erhalten wurde, bei dem auf Grund der starken sterischen Hinderung endo-Addition ausgeschlossen werden kann. Die PMR-Daten dieser Additionsprodukte stimmen im Bereich des Isoxazolidinringes weitgehend mit denen der Additionsprodukte geradkettiger endständiger Alkene an Piperidein-1-N-oxide überein. Somit wurde auch in diesen Fällen exo-Addition angenommen. Den letzten Beweis soll die vorliegende Synthese liefern. Inzwischen erschien eine Arbeit von Tufariello et al.⁷, in der bewiesen werden konnte, daß die Addition von Alkenen an unsubstituiertes Piperidein-1-N-oxid weitgehend bis ausschließlich exo erfolgt.

Azodicarbonsäurediethylester ein Überschuß an Benzoesäure zugesetzt werden kann, der die bei 1,3-Aminoalkoholen mögliche Fragmentierung nach *Grob*⁹ durch Protonierung des Stickstoffs zurückdrängen sollte. Somit bleibt nur noch die Stereochemie jenes Chiralitätszentrums offen, an dessen C-Atom durch Substitution einer geeigneten nucleofugen Gruppe durch den Stickstoff des Piperidinringes das Chinolizidinringsystem aufgebaut wird.

Wird der Ringschluß zum Chinolizidinsystem der Öffnung des Isoxazolidinringes vorgezogen — eine Methode die *Tufariello* et al.¹⁰ zum Aufbau des Lupininalkohols benutzten — so sollte ein wesentlicher Unterschied in der Cyclisierungsgeschwindigkeit der beiden möglichen Diastereomeren auf Grund der unterschiedlichen sterischen Hinderung beim Ringschluß die Zuordnung der Stereochemie an C-6 des Chinolizidinringes der beiden Diastereomeren ermöglichen.

Damit bleibt die Darstellung des geeignet substituierten Piperidein-1-N-oxids. Die Entscheidung zu Gunsten einer Route über das in der 2-Stellung entsprechend substituierte 1-Hydroxipiperidin und Oxidation zum Gemisch aus 6- und 2-substituierten Piperidein-1-N-oxid¹¹ gegenüber einem spezifischen Aufbau des 6-substituierten Piperidein-1- N-oxids beruht darauf, daß das Ketonitron leicht und in hoher Ausbeute in das Ausgangsmaterial übergeführt werden kann. Diese Überlegung führte zu folgender Synthese: 1-Hydroxypiperidin (1) wurde mit gelbem Quecksilberoxid in Chloroform zu Piperidein-1-Noxid (2) oxidiert¹¹. Das erhaltene Nitron 2 wurde mit 4-(*tert*-Butyldimethylsilyloxi)pentylmagnesiumchlorid in absolutem Ether in guter Ausbeute zu den diastereomeren 1-Hydroxy-2-[(4'-*tert*-butyldimethylsilyloxi)pentyl]piperidinen (3 und 4) umgesetzt*, deren spektroskopische Daten mit der angenommenen Struktur in Einklang stehen.

So zeigt das Protonenresonanzspektrum bei einer chemischen Verschiebung von $\delta = 8,05$ ppm das Signal des mit Deuteriumoxid austauschbaren Hydroxylwasserstoffs. Bei $\delta = 3,8$ ppm findet sich ein Sextett, das dem Wasserstoffatom an C-4' entspricht. Bei $\delta = 3,4$ ppm erscheint das Signal des äquatorialen Wasserstoffs in α -Stellung zum Stickstoffatom mit einer geminalen Kopplungskonstante von 10,5 Hz. Das Signal des zugehörigen axialen Wasserstoffatoms wird bei $\delta = 2,52$ ppm gefunden. Das Dublett bei $\delta = 1,1$ ppm mit 5,5-Hz-Kopplungskonstante gehört den Wasserstoffatomen der endständigen Methylgruppe zu. Bei $\delta = 0,9$ ppm erscheint das Protonensignal der *tert*-Butylgruppe. Die beiden Methylgruppen, die an das Siliciumatom gebunden sind, zeigen ein gemeinsames Signal bei $\delta = 0,05$ ppm.

Das Massenspektrum zeigt einen sehr schwachen Molekülionpeak bei 301 Masseeinheiten und als Basispeak das durch Abspaltung der Seitenkette entstandene Fragment mit 100 Masseeinheiten.

^{*} Die beiden Diastereomeren konnten weder durch Adsorptionschromatographie noch durch Kapillargaschromatographie getrennt werden.

¹⁰ Monatshefte für Chemie, Vol. 111/1

Diese Hydroxylamine 3 und 4 wurden mit gelbem Quecksilberoxid in Chloroform zu einem Gemisch aus einen Teil 6-substituierter Piperidein-1-N-oxide (6) und (7) und 2.9-Teilen 2-substituiertem Piperidein-1-N-oxid (5) übergeführt. Das Verhältnis des Nitrongemisches wurde mit Hilfe der Integration des Protonenresonanzspektrums des Gemisches ermittelt. Die Verbindungen (6) und (7) zeigen bei $\delta = 7.1 \, \text{ppm}$ ein triplettisch aufgespaltetes Signal $(J = 3.5 \,\mathrm{Hz})$, das dem Wasserstoffatom an C-2 entspricht. Dieses isolierte Signal kann zur Ermittlung des Verhältnisses von Aldonitronen 6 und 7 und Ketonitron 5 verwendet werden. Auf die Trennung der Substanzen kann verzichtet werden; denn die nun folgende 1,3-dipolare Addition kann auf Grund der großen Empfindlichkeit der Kinetik dieses Reaktionstyps auf sterische Einflüsse¹² so geführt werden, daß ausschließlich die Aldonitrone 6 und 7 reagieren.

Die dafür notwendigen Bedingungen sind Chloroform als Lösungsmittel, ein Überschuß der Olefinkomponente Penten-1 und eine Temperatur von $48\,^{\circ}\mathrm{C}$ über einen Zeitraum von 135 ĥ (werden diese Bedingungen dagegen 250 h lang eingehalten, so enthält das Reaktionsgemisch bereits 2% des Additionsprodukts aus 5 und Penten-1). Der große Polaritätsunterschied zwischen den entstandenen Isoxazolidinen 8 und 9 und dem Nitron 5 macht die Trennung einfach. Aus einer kurzen Kieselgelsäule werden zunächst mit Ether die Isoxazolidine eluiert, dann wird mit Methanol das reine Nitron eluiert. Das hvgroskopische 2-[(4'-tert-Butyldimethylsilyloxi)pentyl]piperidein-1-N-oxid (5) weist im Protonenresonanzspektrum bei $\delta = 3.75$ ppm die unaufgelösten Signale der Wasserstoffatome an C-6 und C-4' auf. Ein weiteres Signal, das nach der Integration vier Wasserstoffatomen entspricht, findet sich bei $\delta = 2.5$ ppm und wird von den Wasserstoffatomen an C-3 und C-1' verursacht. Bei $\delta = 1,1$ ppm erscheint als Dublett das Signal der endständigen Methylgruppe, und bei $\delta = 0.9$ ppm und 0.05 ppm können die Signale der Wasserstoffatome der tert-Butyldimethylsilylgruppe registriert werden. Im Infrarotspektrum kann als charakteristische Bande die C=N⁺-Schwingung der Nitroneinheit bei 1615 cm⁻¹ gelten. Das Massenspektrum zeigt den Molekülionpeak bei 299 Masseeinheiten und als Basispeak 74 Masseeinheiten neben einer sehr großen Anzahl wenig signifikanter und in ihrer Intensität ähnlicher Bruchstücke.

5 kann in Methanol bei 0 °C mit einem Überschuß an Natriumborhydrid mit 85% Ausbeute in die Ausgangsverbindungen 3 und 4 übergeführt werden.

Die Isoxazolidine 8 und 9 wurden nochmals an Kieselgel mit einem Petrolether/Ethergemisch als Laufmittel gereinigt*. Durch die spektroskopischen Daten kann die Struktur von 8 und 9 bestätigt werden, obwohl die hohe Stickstoffinversionsbarriere (die Koaleszenztemperaturen liegen über Raumtemperatur) eine Verbreiterung einiger Signale der Protonenresonanzspektroskopie bewirkt.

^{*} Siehe Fußnote S. 145.

Bei $\delta = 4.25$ ppm kann das Signal des Wasserstoffatoms an C-2 festgestellt werden. Bei $\delta = 3.8$ ppm erscheint das Signal des Wasserstoffatoms an C-4'. Bei $\delta \cong 3.5$ ppm befindet sich das Signal eines Wasserstoffs in α -Stellung zum Stickstoffatom, dem auf Grund von Entkopplungsversuchen die Lage an C-3 a zugeordnet werden muß, weil sowohl zusätzliche Einstrahlung beim Signal des C—H(2) wie auch bei einer chemischen Verschiebung von $\delta = 3.5$ ppm eine Vereinfachung des 6 Liniensignals bei $\delta = 2,3$ ppm mit Kopplungskonstanten $J = {}_{3,3} = 11,5 \text{ Hz}, J_{3,3a} = 10 \text{ Hz}, J_{3,2} = 11,5 \text{ Hz}$ bewirkt. Ebenso verringert Einstrahlung bei $\delta = 2,3 \text{ ppm}$ die Halbwertsbreite der Signale bei $\delta = 4,25 \text{ ppm}$ und $\delta = 3.5$ ppm wesentlich. Daneben kann das Signal bei ungefähr $\delta = 2.5$ ppm dem Wasserstoff an C-7 zugeordnet werden. Bei $\delta = 1,1$ ppm findet sich das Dublett des Signals der endständigen Methylgruppe der fünfgliedrigen Seitenkette, und die Signale bei $\delta = 0.9 \text{ ppm}$ und $\delta = 0.05 \text{ ppm}$ entsprechen den Wasserstoffatomen der tert-Butyldimethylsilylgruppe. Gemeinsam mit den Signalen der Wasserstoffatome der tert-Butylgruppe erscheint das Signal der Wasserstoffe an C-3". Im Massenspektrum tritt neben dem schwachen Molekülionpeak bei. 369 Masseeinheiten als Basispeak das Fragment nach der Abspaltung der Pentylseitenkette auf (168). Die wenig signifikanten IR-spektroskopischen Daten stehen ebenfalls nicht im Widerspruch zur angenommenen Struktur.

Im nächsten Reaktionsschritt wird die *tert*-Butyldimethylsilylgruppe mit Hilfe von Tetrabutylammoniumfluorid in Tetrahydrofuran entfernt¹³. Die Spektren der durch Chromatographie an Kieselgel mit Essigester/Benzol als Laufmittel gereinigten diastereomeren Alkohole 10 und 11* entsprechen weitgehend jenen von 8 und 9. Außer dem Fehlen der Signale der *tert*-Butyldimethylsilylgruppe und dem Auftauchen der Signale der Hydroxylgruppe kann in den Spektren kein signifikanter Unterschied festgestellt werden.

Die beiden Alkohole 10 und 11 wurden in Pyridin gelöst, bei - 15 °C mit Mesvlchlorid versetzt¹⁰ und 7 h bei 3 °C belassen: Dabei entstehen zunächst die diastereomeren Mesylate 12 und 13. Weil bei der nun folgenden Cyclisierung das Chiralitätszentrum am C-Atom C-4' in unmittelbare Nähe der übrigen Chiralitätszentren gelangt, ist hier unterschiedliches Verhalten der beiden Diastereomeren zu erwarten: Tatsächlich findet man nach dem Aufnehmen des Reaktionsgemisches in Ether und Ausschütteln mit wäßriger, eisgekühlter Bicarbonatlösung ein Produkt in der Etherphase, das beim Abdampfen des Lösungsmittels bei ungefähr 60°C im Vakuum in ein etherlösliches Produkt übergeht. Die NMR-spektroskopischen Daten, die gute Löslichkeit in Wasser sowie die Austauschbarkeit des Gegenions am Kationenaustauscher erweisen dieses etherunlösliche Produkt als Chinolizidiniumsalz, dem — wie gezeigt werden wird — die Struktur 15 zukommt, und das etwa 15% des Diastereomeren 14 enthält. Dampft man die Bicarbonatlösung ein und extrahiert den Substanzbrei mit heißem Chloroform, so erhält

^{*} Siehe Fußnote S. 145.

man ein fast reines, kristallines Chinolizidiniumsalz, das NMR-spektroskopisch identisch mit der Nebenmenge 14 des aus dem Etherextrakt erhaltenen Chinolizidiniumsalzes ist. Die Zuordnung kann zunächst hauptsächlich auf Grund der unterschiedlichen Cyclisierungsgeschwindigkeiten vorgenommen werden. So kann mit Hilfe von Molekülmodellen gezeigt werden, daß die sterische Hinderung zwischen der endständigen Methylgruppe (C-5') und den Wasserstoffatomen des Ringsystems beim Ringschluß von 13 wesentlich größer ist als bei 12. Zusätzliche Stereomere, die auf Grund des neu entstandenen Chiralitätszentrums am Stickstoffatom denkbar wären, sind aus sterischen Gründen unmöglich. Während der Cyclisierung tritt an C-4' auf Grund der Waldenumkehr eine Inversion ein, so daß die Verbindung mit der geringeren Cyclisierungsgeschwindigkeit das erwünschte Diastereomere 15 sein sollte.

Das Protonenresonanzspektrum von 15, das bisher nicht vollständig gereinigt werden konnte, steht mit der angenommenen Struktur im Einklang; Signale bei $\delta = 4,65$ ppm (entspricht zwei Wasserstoffatomen, die an C-2 und entweder an C-3a oder C-6a gebunden sind), $\delta = 4,1$ ppm [wieder ein Signal das durch zwei Wasserstoffatome bewirkt wird, von denen eines durch Doppelresonanz als C—H(10) ermittelt werden konnte, das zweite ist entweder C—H(3a) oder C—H(6a)], $\delta = 2,7$ ppm (Signal der Wasserstoffatome des Gegenions Methylsulfonat) und $\delta = 1,8$ ppm Dublett der Methylgruppe an C-10).

Das Chinolizidiniumsalz 14 kann dagegen durch Umkristallisieren aus Tetrachlorkohlenstoff und wenig Methylenchlorid gereinigt werden und zeigt etwas abweichende Signale im Protonenresonanzspektrum.

So erscheint bei $\delta = 4,85$ ppm das Multiplett, das vom Wasserstoffatom an C-2 stammt. Zwischen $\delta = 4,7$ ppm und $\delta = 4,2$ ppm tauchen unaufgelöst die Signale der 3 zum Stickstoffatom α -ständigen Wasserstoffatome C—H(3 a), C—H(6a) und C—H(10) auf. Bei $\delta = 3,18$ ppm zeigt sich das gut aufgelöste 8-Liniensignal eines der beiden Wasserstoffatome an C-3 mit Kopplungskonstanten von 13 Hz, 10,5 Hz und 8,3 Hz. Bei $\delta = 2,7$ ppm findet sich das Signal das vom Gegenion verursacht wird. Das Protonensignal der Methylgruppe an C-10 findet sich gegenüber dem ¹H-NMR-Spektrum von 15 um 0,35 ppm zu höherem Feld verschoben, nämlich bei $\delta = 1,45$ ppm mit einer um 1,5 Hz kleineren Kopplungskonstante (6 Hz).

Da diese Daten die angenommenen Strukturen nicht ausreichend beweisen, wurde sowohl 14 als auch 15 durch Behandeln mit Lithiumaluminiumhydrid in kochendem $THF^{10,14}$ in die entsprechenden Chinolizidinderivate (16 bzw. 17) übergeführt. Dabei konnten nun spektroskopisch signifikante Unterschiede gefunden werden. So zeigt jener Alkohol 16, der aus dem Chinolizidiniumsalz 14 entsteht, im IR-Spektrum keine Bohlmannbanden¹⁵ und eine sehr starke intramolekulare Wasserstoffbrücke (3 335-2 700 cm⁻¹). Das spricht für eine

Struktur bei der keines oder höchstens eines der zum Stickstoffatom α-ständigen Wasserstoffatome antiperiplanar zum freien Elektronenpaar des Stickstoffs steht. Das Studium der Molekülmodelle zeigt, daß beide Alkohole 16 und 17 nur in der cis-Konformation des Chinolizidinringes eine Wasserstoffbrücke zwischen dem Hydroxylsauerstoff an C-2' und dem Stickstoff ausbilden können. Doch scheint nur im Fall von 16 auf Grund der starken Wechselwirkung der beiden axialen Gruppen an C-4 und C-6 des Chinolizidinringes in der transoiden-Konformation die an sich energetisch ungünstigere cisoide-Konformation bevorzugt zu werden. Die Lage der Signale der 3 zum Stickstoffatom a-ständigen Wasserstoffatome im Protonenresonanzspektrum von 16 bei $\delta = 3,65 \text{ ppm C---H}(4), \delta = 3,45 \text{ ppm C----H}(9a)$ und $\delta = 3.15$ ppm C—H (6) zeigen ebenfalls, daß höchstens eines dieser Wasserstoffatome eine zum freien Elektronenpaar des Stickstoffs antiperiplanare Lage einnimmt ($\delta = 3,15$ ppm). Die Lage dieser 3 Signale bei tiefem Feld, verglichen mit den entsprechenden Signalen von 17, sowie das bei sehr tiefem Feld auftauchende breite, mit Deuteriumoxid austauschbare Signal des Hydroxylwasserstoffs deuten ebenfalls eine starke intramolekulare Wasserstoffbrücke an. Die extrem weit auseinanderliegenden Signale der geminalen Wasserstoffatome an C-1' $(\delta = 2.55 \text{ ppm mit Kopplungskonstanten von } J = 14 \text{ Hz}, J = 11 \text{ Hz},$ J = 4 Hz und $\delta = 1.2$ ppm — durch Doppelresonanz bei der Lage des Signals des C-H (2') bei $\delta = 3.9$ ppm und des Signals des C-H (4) bei $\delta = 3,65$ ppm ermittelt — weisen auf eine starre Lage der Seitenkette hin, die durch die Wasserstoffbrücke bedingt ist.

Die Massenspektren von 16 und 17 unterscheiden sich in ihren Fragmentierungsschemata naturgemäß nur sehr wenig. Doch zeigt das Spektrum von 16 neben dem Molekülionpeak bei 239 (2%) und dem Basispeak bei 152 Masseeinheiten (das entspricht dem Fragment nach der Abspaltung der fünfgliedrigen Seitenkette) die restlichen Fragmente nur in geringer Intensität, während beim Spektrum von 17 neben 239 (6%) und 152 (100%) als intensive Bruchstücke 224 (24%) und 138 (48%) auftreten.

Bei 17 findet man im IR-Spektrum ausgeprägte Bohlmannbanden (2 800 cm⁻¹, 2 720 cm⁻¹, 2 630 cm⁻¹), was auf mehrere antiperiplanar zum Elektronenpaar des Stickstoffatoms stehende Wasserstoffatome hinweist. Im Falle von 17 tritt die Schwingung der nicht assoziierten H—O-Bindung (3 610 cm⁻¹) auf. Das Protonenresonanzspektrum bestätigt die auf Grund des Infrarotspektrums getroffene Zuordnung. Neben dem Signal des Wasserstoffatoms an C-2' bei $\delta = 3,65$ ppm findet sich ein Multiplett bei $\delta = 3,3$ ppm, von dem durch Doppelresonanz gezeigt werden kann, daß es dem C—H (4) zugehört. Auf Grund seiner Lage bei relativ niedrigem Feld muß auf eine äquatoriale Stellung des zum Stickstoffatom α -ständigen Wasserstoffs geschlossen werden. Das bedingt aber, daß die fünfgliedrige Seitenkette, die ebenfalls mit C-4 verknüpft ist, sich in axialer Stellung befindet. Im Bereich zwischen $\delta = 2,6$ ppm und $\delta = 2,18$ ppm finden sich die Signale von C—H (6) und C—H (9a). Ihre Lage bei hohem Feld weist auf axiale Stellung hin. Das entspricht aber bis auf die Konfiguration an C-2' der Struktur des Hydrolyseprodukts des Porantherilidins (Porantherilidinalkohol). Tatsächlich zeigt ja auch das IR-Spektrum von 17 im Gegensatz von dem von 16 nur äußerst geringe Abweichungen vom IR-Spektrum des Porantherilidinalkohols.

Damit erscheint die Struktur von 17 als Epiporantherilidin-Alkohol gesichert. Dessen invertierende Veresterung führt zu Porantherilidin: Zu diesem Zweck wird der Alkohol 17 in einem Benzol/*THF*-Gemisch mit Triphenylphosphan und einem Überschuß von Benzoesäure versetzt. Zu diesem Gemisch wird Azodicarbonsäurediethylester bei Raumtemperatur zugetropft. Nach dem Auftrennen des erhaltenen Reaktionsgemisches zuerst an Kieselgel mit Essigester, dann an Aluminiumoxid mit Toluol/Essigester als Laufmittel wird neben größeren Mengen Ausgangsmaterial 17 eine Verbindung erhalten, die in ihren spektroskopischen Daten mit den spektroskopischen Daten des aus *Poranthera corymbosa* isolierten Porantherilidin völlig übereinstimmt.

So finden sich als charakteristische Banden im IR-Spektrum neben der Schwingung der Carbonylband bei 1718 cm⁻¹ bei 3070 cm⁻¹ die C-H-Schwingungen der Wasserstoffatome am Aromaten, bei $2\,790\,{\rm cm}^{-1}$ und 2720 cm⁻¹ die Bohlmannbanden und bei 1604 und 1585 cm⁻¹ die Kohlenstoffschwingungen des Aromatenanteils. Im Protonenresonanzspektrum findet man neben den Signalen der aromatischen Wasserstoffatome bei $\delta = 8,05$ und $\delta = 7.5$ ppm bei $\delta = 5.21$ ppm das Signal jenes Wasserstoffatoms, das an dasselbe Kohlenstoffatom gebunden ist wie die Benzoatgruppe. Bei $\delta = 3,32$ ppm kann das Wasserstoffatom, das an jenes Kohlenstoffatom des Chinolizidinringes gebunden ist, an dem auch die fünfgliedrige Seitenkette hängt, gefunden werden. Die Lage dieses Signals bei tiefem Feld zeigt, daß die fünfgliederige Seitenkette axiale Stellung einnimmt. Dagegen befindet sich das Signal des Wasserstoffs, der an dasselbe Kohlenstoffatom wie die Methylgruppe geknüpft ist, bei $\delta = 2.4$ ppm. Das heißt, daß die Methylgruppe äquatoriale Lage einnehmen muß. Bei $\delta = 2.3$ ppm erscheint als letztes der Signale der zum Stickstoff a-ständigen Wasserstoffatome C-H (9'a). Das Dublett der Signale der Wasserstoffe der Methylgruppe liegt bei $\delta = 1.08 \text{ ppm}$.

Die Fragmentierungen im Massenspektrometer entsprechen denen, die Lamberton et al.¹ in ihrer Arbeit angeben. Das synthetische (\pm) -Porantherilidin zeigt sowohl auf Aluminiumoxid beschichteten Platten wie auch auf Kieselgeldünnschichtplatten identische *Rf*-Werte wie der Naturstoff.

Damit ist bewiesen, daß der hier beschriebene Syntheseweg zu (\pm) -Porantherilidin führt.

Dank

Mein Dank gilt den Herren Dr. E. Haslinger und Dr. W. Silhan für die PMR-Messungen. Den Herren Dr. A. Nikiforov, H. Bieler und Frau G. Fitz für die Massenspektren und Herrn Dr. A. Nikiforov für die kapillargaschromatographischen Untersuchungen. Herrn Prof. Dr. E. Zbiral habe ich für seine Unterstützung zu danken. Mein ganz besonderer Dank gilt Herrn Dr. A. Lamberton für die Überlassung von Porantherilidinhydrobromid und Porantherilidinalkohol zu Vergleichszwecken und der Übersendung von Kopien der Infrarot- und PMR-Spektren der genannten Substanzen.

Die 60 MHz NMR-Spektren wurden auf einem vom Jubiläumsfonds der Oesterreichischen Nationalbank (Projekt 996) zur Verfügung gestellten Gerät durchgeführt.

Der Fonds zu Förderung der wissenschaftlichen Forschung stellte den für gaschromatographische Voruntersuchungen verwendeten Gaschromatographen (Projekt 3306) und das für die 100 MHz NMR-Spektren benutzte Gerät zur Verfügung.

Experimenteller Teil

Die Aufnahme der ¹H-NMR-Spektren und der ¹³C-NMR-Spektren erfolgte auf einem Varian XL-100. Tetramethylsilan diente als interner Standard. Die Zuordnung der Signale und ihrer Kopplungskonstanten erfolgte auf Grund von Doppelresonanzversuchen. Die Infrarot-Spektren wurden mit Hilfe des Gerätes Infracord 237 (Perkin-Elmer) vermessen. Für die Massenspektren stand das Spektrometer CH-7 (Varian) zur Verfügung. Die Schmelzpunkte wurden auf einem Koflerapparat bestimmt und sind unkorrigiert. Für die Chromatographie wurden Stufensäulen verschiedener Größe verwendet. Als Adsorpentien dienten Kieselgel (Korngröße 0,063-0,200 mm, Merck) oder Aluminiumoxid nach Brockmann (Korngröße 0,063-0,200, Merck).

(\pm) 4-(tert-Butyldimethylsilyloxi)pentylchlorid

1,22g 1-Chlor-4-hydroxypentan wurden in 3 ml trockenem Dimethylformamid mit 1,7 g tert-Butyldimethylchlorsilan und 1,5 g Imidazol versetzt¹³ und über Nacht bei Raumtemperatur unter wasserfreien Bedingungen gerührt. Das Reaktionsgemisch wurde auf Wasser gegossen und mehrmals mit Petrolether ausgeschüttelt. Nach dem Trocknen der gesammelten Petroletherphase und dem Abdestillieren des Lösungsmittels wurde im Wasserstrahlvakuum destilliert. Dabei wurde 1,9 g (80% der Theorie) 4-(tert-Butyldimethylsilyloxi)pentylchlorid als farblose Flüssigkeit (KP: 98 °C) erhalten.

IR (CH_2Cl_2) : 2 950, 2 925, 2 830, 1 465, 1 375, 1 305, 1 245, 1 130, 1 085, 1 005, 835, 645.

¹H-NMR (CDCl₃): $\delta = 3.9 \text{ ppm}$ (sextett) J = 6 Hz (1 H) C—H (4); $\delta = 3.6 \text{ ppm}$ (t) J = 6 Hz (2 H) C—H (1); $\delta = 2.15 \text{ ppm}$ —1.2 ppm (unaufgelöst) (4 H) C—H (2), C—H (3); $\delta = 1.1 \text{ ppm}$ (d) J = 6 Hz (3 H) C—H (5); $\delta = 0.9 \text{ ppm}$. (9 H) tertbutyl-H; $\delta = 0.05 \text{ ppm}$ (s) (6 H) silylmethyl-H.

(+)-1-Hydroxy-2-S*-[(4'-S*-tert-butyldimethylsilyloxi)pentyl]-piperidin (3)

(\pm) -1-Hydroxy-2-S*-[(4'-R*-tert-butyldimethylsilyloxi)pentyl]-piperidin (4)

2,56g 4-(*tert*-Butyldimethylsilyloxi)pentylchlorid wurde in 7 ml absolutem Ether gelöst. Ein Teil dieser Lösung wurde zu 280 mg Magnesiumspänen und einem Iodkristall zugegeben und bei Raumtemperatur heftig gerührt. (Die Reaktion startete erst nach Zugabe geringerer Mengen einer extern gestarteten Reaktion zwischen 1,2-Dibromethan und Magnesium in absolutem Ether.) Danach wurde die restliche Menge des gelösten 4-(*tert*-Butyldimethylsilyl-

oxi)pentylchlorid zugetropft. Dabei wurde die Reaktion durch Erwärmen unter Rückfluß gehalten. Nach 6h Kochen unter Rückfluß war die Reaktion weitgehend beendet. Zu diesem Reaktionsgemisch wurde unter Rühren 1,1g Piperidein-1-N-oxid¹¹, gelöst in 25 ml Ether absol., bei Raumtemperatur zugetropft, und weitere 5 h bei Raumtemperatur gerührt. Dann wurde zu dem Reaktionsgemisch gesättigte Ammoniumsulfatlösung zugesetzt. Die Etherphase wurde abgetrennt, die wäßrige Phase mehrmals mit Ether ausgeschüttelt. Die vereinigten Etherlösungen wurden mit NaCl-gesättigtem Wasser nachgewaschen und mit Magnesiumsulfat getrocknet. Nach dem Abdestillieren des Lösungsmittels wurde das Rohprodukt an einer kurzen Kieselgelsäule mit Petrolether/Ethergemisch mit steigendem Ethergehalt als Eluens gereinigt. Dabei fallen zuerst geringe Mengen des Kopplungsproduktes [2,9-Di-(tertbutyldimethylsilyloxi)decan] an, dann 2,5 g reines 3 und 4 (77% der Theorie) als farbloses Öl. Das Diastereomerengemisch 3 und 4 konnte weder durch Adsorptionschromatographie noch durch Kapillargaschromatographie getrennt werden.

IR (CH_2Cl_2) : 3590, 3210 br., 2930, 2860, 1465, 1370, 1240, 1130, 1110, 1105, 1065, 1040, 1020, 1005, 960, 940, 880, 855, 805.

¹H-NMR (CDCl₃): $\delta = 8,05$ ppm (breit) (1 H) mit D₂O austauschbar O—H; $\delta = 3,8$ ppm (sextett) J = 5,5 Hz (1 H) C—H (4'); $\delta = 3,4$ ppm B-Teil eines ABXY-Systems $J_{AB} = 10,5$ Hz (1 H) C—H (6e); $\delta = 2,52$ ppm A-Teil des ABXY-Systems $J_{AB} = 10,5$ Hz, $J_{AX} = 10$ Hz, $J_{AY} = 4$ Hz (1 H) C—H (6a); $\delta = 2,35$ —1,1 ppm (unaufgelöst) (13 H); $\delta = 1,1$ ppm (d) J = 5,5 Hz (3 H) C—H (5'); $\delta = 0,9$ ppm (s) (9 H) tert-butyl-H; $\delta = 0,05$ ppm (s) (6 H) silylmethyl-H.

 $\begin{array}{c} {\rm MS:} \ 301 \ M^+ \ (0.2\%), \ 244 \ (8\%), \ 226 \ (23\%), \ 170 \ (8\%), \ 169 \ (17\%), \ 152 \ (32\%), \\ 113 \ (14\%), \ 110 \ (50\%), \ 101 \ (16\%), \ 100 \ (100\%), \ 97 \ (20\%), \ 96 \ (9\%), \ 84 \ (98\%), \ 83 \\ (10\%), \ 82 \ (18\%), \ 75 \ (72\%), \ 73 \ (42\%), \ 55 \ (30\%), \ 41 \ (30\%). \end{array}$

Oxidation und anschließende Cyclisierung von 3 und 4.

3 g von 3 und 4 wurden in 35 ml alkoholfreiem CHCl₃ gelöst und unter starkem Rühren bei 45°C mit 2,4g gelbem Quecksilberoxid versetzt. Nach 5h wurde über Celite abfiltriert und mit CHCl₂ nachgewaschen. Dann wurde diese Lösung auf etwa 40 ml eingeengt. Ein kleiner Anteil dieser Lösung wurde vom Chloroform befreit und ein ¹H-NMR-Spektrum gemessen. Aus der Integration dieses Spektrums ergab sich ein Verhältnis von 1 Teil (\pm) -6-S*-/(4'-S*-tert-Butyldimethylsilyloxi) pentyl Jpiperidein-1-N-oxid (6) und (\pm) -6-S*- $[(4'-R^*-tert-$ Butyldimethylsilyloxi) pentyl [piperidein-1-N-oxid] $(\mathbf{7})$ und 2,8-3Teilen $(\pm)-2-[(4'-tert-Butyldimethylsilyloxi)pentyl]piperidein-1-N-oxid (5).$ Die 40 ml Chloroformlösung von 5, 6 und 7 wurde mit 2 g Penten-1 versetzt und 135 h bei 48 °C belassen. Dann wurde das überschüssige Penten und Chloroform im Wasserstrahlvakuum abdestilliert und das erhaltene Rohgemisch über eine kurze Kieselgelsäule mit Ether filtriert. Dabei erhielt man 1,18 g unreines (+)- $2-S^*-Propyl-7-S^*-[(4'-S^*-tert-butyldimethylsilyloxi)pentyl]-3a-S^*-3a-H-he$ xahydropyridino[1,2-b]isoxazol (8) und (\pm) -2-S*-Propyl-7-S*-[(4'-R*-tert-butyldimethylsilyloxi)pentyl]-3a-S*-3a-H-hexahydropyridino[1,2-b]isoxazol (9). Danach wurde die Säule mit Methanol eluiert. Aus dieser Methanolfraktion konnte durch Abdestillieren des Lösungsmittels 2,15 g 5 als gelbes Öl gewonnen werden.

Spektroskopische Daten von 5:

IR (CHCl₃): 2980 sh, 2970, 2930, 2480 (breit), 1615, 1475, 1470, 1450,

 $1\,380,\,1\,365,\,1\,260,\,1\,190,\,1\,160,\,1\,140,\,1\,105,\,1\,085,\,1\,070,\,1\,050,\,1\,020,\,1\,005,\,900,\\840,\,805.$

¹H-NMR (CDCl₃): $\delta = 3,75$ ppm (m) w_{1/2} = 14 Hz (3 H) C—H (6), C—H (4'); $\delta = 2,5$ ppm (4 H) C—H (3), C—H (1'); $\delta = 2,1$ —1,3 ppm (8 H) C—H (4), C—H (5), C—H (2'), C—H (3'); $\delta = 1,1$ ppm (d) J = 6 Hz (3 H) C—H (5'); $\delta = 0,9$ ppm (s) (9 H) *tert*-butyl-H; $\delta = 0,05$ ppm (s) (6 H) silylmethyl-H.

 $\begin{array}{l} \mathrm{MS:} \ 299\ (2\%)\ M^+,\ 284\ (3\%),\ 282\ (8\%),\ 243\ (7\%),\ 242\ (36\%),\ 240\ (15\%),\ 226\\ (34\%),\ 212\ (6\%),\ 185\ (18\%),\ 170\ (32\%),\ 168\ (5\%),\ 167\ (9\%),\ 166\ (8\%),\ 159\ (8\%),\\ 152\ (67\%),\ 124\ (20\%),\ 113\ (18\%),\ 111\ (13\%),\ 110\ (27\%),\ 97\ (62\%),\ 96\ (25\%),\ 82\\ (11\%),\ 75\ (100\%),\ 73\ (56\%),\ 59\ (31\%),\ 43\ (16\%),\ 41\ (38\%),\ 32\ (27\%),\ 28\ (119\%). \end{array}$

Die 1,18 g unreines 8 und 9 werden durch Chromatographie an Kieselgel mit Petrolether: Ether (4:1) als Eluens gereinigt, dabei konnten 880 mg reines Diastereomerengemisch als leicht gelbliches Öl gewonnen werden (24%ausgehend von 3 und 4). 8 und 9 konnten weder durch Adsorptionschromatographie noch durch Kapillargaschromatographie getrennt werden.

Spektroskopische Daten von 8 und 9:

IR (CH₂Cl₂): 2 980 sh, 2 970, 2 940, 2 860, 1 465, 1 460 sh, 1 450, 1 440, 1 405 w, 1 375, 1 360, 1 350 sh, 1 245, 1 135, 1 090, 1 070, 1 050, 1 020, 1 010, 990, 955, 945, 915, 895, 840, 810, 785, 660.

¹H-NMR (CDCl₃): Die Signale sind unscharf, weil die Koaleszenztemperatur der Stickstoffinversion über Raumtemperatur liegt. $\delta = 4,25$ ppm (m) (1 H) C—H (2); $\delta = 3,8$ ppm (sextett) J = 6,5 Hz (1 H) C—H (4'); $\delta \cong 3,5$ ppm (m) (1 H) C—H (3 a); $\delta = 2,5$ ppm (m) (1 H) C—H (7); $\delta = 2,3$ ppm 6-Liniensignal $J_{3,3} = 11,5$ Hz, $J_{3,3a} = 10$ Hz, $J_{3,2} = 11$ Hz (1 H) C—H (3); $\delta = 2,05$ ppm—1,15 ppm (unaufgelöst) (17 H); $\delta = 1,1$ ppm (d) J = 6,5 Hz (3 H) C—H (5'); $\delta = 0,9$ ppm (12 H) C—H (3") und tert-butyl-H; $\delta = 0,05$ ppm (s) (6 H) silylmethyl-H.

 $\begin{array}{c} \mathrm{MS:369(9\%)}\ M^+,\ 354\ (4\%),\ 312\ (8\%),\ 242\ (21\%),\ 226\ (32\%),\ 169\ (74\%),\ 168\\ (100\%),\ 152\ (16\%),\ 124\ (11\%),\ 115\ (10\%),\ 110\ (11\%),\ 101\ (8\%),\ 96\ (24\%),\ 84\ (13\%)\\ 83\ (16\%),\ 82\ (38\%),\ 81\ (20\%),\ 75\ (100\%),\ 73\ (78\%),\ 67\ (43\%),\ 54\ (71\%),\ 41\ (68\%). \end{array}$

Reduktion des (\pm) -2-[(4'-tert-butyldimethylsilyloxi)pentyl]piperidein-1-N-oxid (5)

Das isolierte 5 (2,15 g) wurde in 40 ml Methanol gelöst und bei 0 °C unter Rühren mit einem Überschuß von Natriumborhydrid versetzt und weitere drei h bei 0 °C gerührt. Dann wurde dem Reaktionsgemisch NaCl gesättigtes Wasser zugesetzt und mehrmals gegen Ether ausgeschüttelt. Die gesammelten Etherphasen wurden mit Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Das erhaltene Rohprodukt wurde an Kieselgel mit Petrolether: Ether (1:2) als Eluens chromatographiert. Dabei konnten 1,8 g 3 und 4 (84% der Theorie) zurückgewonnen werden.

- (±)-2-S*-Propyl-7-S*-(4'-S*-hydroxypentyl)-3a-S*-3a-H-hexahydropyridino-[1,2--b]isoxazol (10)
- (±)-2-S*-Propyl-7-S*-(4'-R*-hydroxypentyl)-3a-S*-3a-H-hexahydropyridino-[1,2--b]isoxazol (11)

1,5g 8 und 9 wurden in 75 ml 0,1 *M*-Tetrabutylammoniumfluoridlösung in absolutem Tetrahydrofuran gelöst und 60 h bei 45 °C gerührt. Dann wurde das Reaktionsgemisch auf Wasser gegossen und 5mal mit Ether ausgeschüttelt. Die gesammelten Etherphasen wurden mit Magnesiumsulfat getrocknet und das Lösungsmittel im Wasserstrahlvakuum entfernt. Das erhaltene Produkt wurde an Kieselgel mit Essigester:Benzol (4:1) als Laufmittel chromatographiert. Dabei wurden 0.972 g 10 und 11 (94% der Theorie) als farbloses viskoses Ölerhalten.

¹ Die beiden Diastereomeren 11 und 10 waren weder durch Adsorptionschromatographie noch durch Kapillargaschromatographie zu trennen.

IR $(C\hat{H}_2\hat{Cl}_2)$: 3 610, 3 440 (breit), 3 040, 2 940, 2 870, 1 465, 1 380, 1 345, 1 275, 1 130, 955, 935, 910, 825.

¹H-NMR (CDCl₃): $\delta = 4,28$ ppm (m) (1 H) C—H (2); $\delta = 3,78$ ppm (sextett) J = 6 Hz (1 H) C—H (7); $\delta = 2,35$ ppm (m) (1 H) mit D₂O austauschbar O—H; $\delta = 2,3$ ppm 6 Liniensignal $J_{3,3} = 11,5$ Hz, $J = {}_{3,3e} = 10$ Hz, $J_{3,2} = 11,5$ Hz (1H) C—H (3); $\delta = 2,05$ ppm—1,15 ppm unaufgelöst (17 H); $\delta = 1,15$ ppm (d) J = 6,0 Hz (3 H) C—H (5'); $\delta = 0,9$ ppm (m) (3 H) C—H (3'').

MS:255 M^+ (3%), 169 (24%), 168 (100%), 152 (5%), 136 (7%), 96 (12%), 82 (19%), 69 (11%), 67 (20%), 55 (35%), 41 (41%).

(\pm) -2-S*-Propyl-10-S*-methyl-3a-S*-3a-H-6a-S*-11-S*-decahydroisoxazolo-[2,3—e]chinolizinium methylsulfonat (14)

(\pm) -2-S*-Propyl-10-R*-methyl-3a-S*-3a-H-6a-S*-11-S*-decahydroisoxazolo-[2,3—e]chinolizinium methylsulfonat (15)

972 mg 10 und 11 wurden in 15 ml absolutem Pyridin gelöst und bei — 15 °C unter Rühren 600 mg Methansulfonylchlorid zugetropft. Dann wurde das Reaktionsgemisch 7 h bei 3 °C gerührt. Darauf wurde das Gemisch auf eisgekühlte Bicarbonatlösung gegossen und mehrmals mit Ether ausgeschüttelt. Die Etherphasen wurden mit Wasser nachgewaschen, mit Magnesiumsulfat bei 0 °C getrocknet und dann eingedampft, mit Toluol versetzt um letzte Reste Pyridin zu entfernen, nochmals bei etwa 70 °C im Wasserstrahlvakuum eingedampft. Das erhaltene Rohprodukt ist nicht mehr in Ether löslich. Es wurde in Wasser aufgenommen und 2mal gegen Ether ausgeschüttelt. Dann wurde die wäßrige Phase eingedampft. Das erhaltene Produkt bestand zu mehr als 80% aus 15 und zu über 15% aus 14.

Die Bicarbonatlösung wurde ebenfalls eingedampft, und der Rückstand mehrere Male mit heißem Chloroform verrührt und abdekantiert. Die gesammelten Chloroformlösungen wurden eingedampft und lieferten 14, das aus Tetrachlorkohlenstoff und Spuren Methylenchlorid auskristallisiert werden konnte. Die Substanz ist über 100 °C nicht stabil und geht in eine bisher nicht untersuchte Substanz über.

IR (CHCl₃): 3 660, 3 340 breit, 3 200, 3 040, 2 960, 2 880, 1 465, 1 390, 1 280, 1 200, 1 135, 1 115, 1 070, 1 040, 1 005, 975, 940, 870.

¹H-NMR (CDCl₃): $\delta = 4.85 \text{ ppm}$ (m) (1 H) C—H (2); $\delta = 4.7$ —4.2 ppm unaufgelöst (3 H) C—H (3 a), C—H (6 a), C— (10); $\delta = 3.18 \text{ ppm}$ 8 Liniensignal J = 13 Hz, J = 10.5 Hz, J = 8.3 Hz C—H (3) (1 H); $\delta = 2.7 \text{ ppm}$ CH₃SO₃⁻—H; $\delta = 2.6$ —1.2 ppm unaufgelöst mit Ausnahme von $\delta = 1.45$ (d) J = 6 Hz (3 H) CH₃—C(10)—H; $\delta = 0.97 \text{ ppm}$ (3 H) C—H (3').

Substanz 15 konnte bisher nicht vollständig gereinigt werden.

IR $(CHCl_3)$: 3670, 3410 breit, 3040, 2930, 2880, 1460, 1390, 1320, 1305, 1270, 1170, 1035, 970, 940, 865.

¹H-NMR (CDCl₃): $\delta = 4,65 \text{ ppm}$ (m) (2 H) C—H (3 a) oder C—H (6 a); $\delta = 4,1 \text{ ppm}$ (m) (2 H) C—H (3 a) oder C—H (6 a), C—H (10); $\delta = 3,1 \text{ ppm}$ mit D₂O austauschbar (Hydratwasser, siehe auch IR); $\delta \cong 3 \text{ ppm}$ C—H (3) (teilweise verdeckt); $\delta = 2,7 \text{ ppm}$ CH₃SO₃-—H; $\delta = 2,7$ --1,0 ppm unaufgelöst mit Ausnahme von $\delta = 1,8 \text{ ppm}$ (d) J = 7,5 Hz (3 H) CH₃--C(10)--H; $\delta = 0,95 \text{ ppm}$ (m) (3 H) C--H (3').

Edda Gössinger:

(\pm) -4-S*-(2-S*-hydroxypentyl)-6-S*-methyloctahydro-9a-R*-9a-Hchinolizin (16)

230 mg rohes 14 wurden in 25 ml Tetrahydrofuran (absol.) gelöst und mit einem Überschuß von Lithiumaluminiumhydrid 6 h unter Rückfluß gekocht. Dann wurde mit gesättigter wäßriger Ammonsulfatlösung das überschüssige Lithiumaluminiumhydrid zerstört und das Gemisch 6mal gegen Ether ausgeschüttelt. Die gesammelten Etherphasen wurden mit NaCl-gesättigtem Wasser nachgewaschen und dann mit Magnesiumsulfat getrocknet. Darauf wurde der Ether abgedampft und das Rohgemisch an Aluminiumoxid mit Chloroform:Methylenchlorid (1:2) chromatographiert. Dabei konnten 100 mg reines 16 eluiert werden.

IR (CH₂Cl₂): 3 160 breit (3 500–2 500), 3 045, 2 940, 2 870, 1 465, 1 445, 1 380 sh, 1 370, 1 335, 1 210, 1 190, 1 140, 1 110, 1 075, 1 050, 1 035, 1 025, 990, 960, 880, 855, 835, 810, 620.

¹H-NMR (CDCl₃): $\delta = 6,3$ ppm w_{1/2} = 30 Hz mit D₂O austauschbar (1 H) O—H; $\delta = 3,9$ ppm (m) (1 H) C—H (2'); $\delta \cong 3,65$ ppm C—H (4); $\delta = 3,45$ ppm (m) (1 H) C—H (9a); $\delta = 3,15$ ppm (m) (1 H) C—H (6); $\delta = 2,55$ ppm 7 Liniensignal $J_{1',4} = 14$ Hz, $J_{1',1'} = 11$ Hz, $J_{1',2'} = 4$ Hz (1 H) C—H (1'); $\delta = 2,2-0,8$ ppm unaufgelöst mit Ausnahme von $\delta \cong 1,2$ ppm $J_{1',1'} = 11$ Hz, $(J_{1',2'} \cong 4$ Hz, $J_{1',4} \cong 4$ Hz) (1 H) C—H (1'); $\delta = 1,18$ ppm (d) J = 6 Hz (3 H) CH₃C(6)—H.

 $\begin{array}{c} {\rm MS:} 239\ (2\%)\ M^+,\ 224\ (3\%),\ 206\ (5\%),\ 196\ (8\%),\ 166\ (2\%),\ 153\ (12\%),\ 152\ (100\%),\\ 138\ (7\%),\ 136\ (5\%),\ 124\ (5\%),\ 97\ (3\%),\ 96\ (4\%),\ 69\ (5\%),\ 55\ (15\%),\ 43\ (5\%),\ 41\ (12\%),\ 32\ (13\%),\ 28\ (60\%). \end{array}$

(\pm) -4-S*-(2'-S*-hydroxypentyl)-6-R*-methyloctahydro-9a-R*-9a-H-chinolizin (17) (Epiporantherilidinalkohol)

0.5g rohes 15 wurden in 25 ml absolutem *THF* gelöst und mit einem Überschuß von Lithiumaluminiumhydrid (100 mg) 5 h unter Rückfluß gekocht. Dann wurde das überschüssige Lithiumaluminiumhydrid mit gesättigter wäßriger Ammoniumsulfatlösung zerstört. Das Gemisch wurde 6mal mit Ether ausgeschüttelt. Die gesammelten Etherphasen wurden mit NaCl gesättigtem Wasser nachgewaschen. Dann wurde mit Magnesiumsulfat getrocknet und das Lösungsmittel im Wasserstrahlvakuum abdestilliert. Das erhaltene Produkt wurde an Aluminiumoxid mit Chloroform:Methylenchlorid (2:1) chromatographiert. Dabei konnten 250 mg reines 17 erhalten werden. Das entspricht einer Ausbeute von 55% über 3 Stufen ausgehend von 10.

IR (CH_2Cl_2) : 3 615, 3 420 br, 3 015 w, 2 920, 2 800, 2 720, 2 630, 1 450, 1 370, 1 320, 1 280, 1 260, 1 190, 1 160, 1 140, 1 125, 1 105, 1 070, 1055, 1 005, 975, 960, 940, 930, 905, 885, 845,

¹H-NMR (CDCl₃): $\delta = 3,65$ ppm (m) (1 H) C—H (2'); $\delta = 3,3$ ppm (m) (1 H) C—H (4); $\delta = 2,6$ ppm (m) (1 H) mit D₂O austauschbar O—H; $\delta = 2,6$ —2,18 ppm (2 H) C—H (6), C—H (9 a); $\delta = 1,9$ —0,8 unaufgelöst mit Ausnahme von $\delta = 1,7$ ppm $J_{1',4} = 7$ Hz, $J_{1',2'} = 7$ Hz, C—H (1'); $\delta = 1,08$ ppm (d) J = 6 Hz (3 H) CH₃—C(6)—H; $\delta = 0,94$ ppm (m) (3 H) C—H (5').

 $\begin{array}{c} & \text{MS: 239 (6\%) } \underline{M^+, 238 (3\%); 224 (24\%), 196 (4\%), 166 (4\%), 153 (61\%), 152 (100\%), \\ & 138 (48\%), 136 (14\%), 124 (12\%), 110 (5\%), 109 (4\%), 108 (5\%), 98 (10\%), 97 \\ & (9\%), 96 (10\%), 84 (10\%), 82 (15\%), 81 (10\%), 69 (15\%), 67 (23\%), 56 (18\%), 55 \\ & (50\%), 54 (11\%), 53 (8\%), 43 (18\%), 42 (18\%), 41 (40\%), 28 (58\%). \end{array}$

156

(\pm) -Porantherilidin = (\pm) -1-R*-(6'-R*-methyloctahydro-9'a-R*-H-chinolizin-4'-S*-ylmethyl)butylbenzoat (18)

171 mg 17 und 246 mg Triphenylphosphan wurden mit 3 ml absolutem Benzol und 1 ml absolutem THF versetzt, dazu wurden 160 mg Benzoesäure, gelöst in 2 ml Benzol, unter Rühren zugetropft. Nach 20 min wurden zu diesem Gemisch langsam 166 mg Azodicarbonsäurediethylester, gelöst in 1 ml absolutem Benzol, zugetropft. Dieses Gemisch wurde über Nacht bei Zimmertemperatur gerührt. Dann wurde das Lösungsmittel im Wasserstrahlvakuum abdestilliert und der Rückstand über eine kurze Kieselgelsäule mit Essigester filtriert. Dabei fiel zuerst Hydrazodicarbonsäurediethylester an, dann folgte 18 verunreinigt mit Triphenylphosphanoxid. Das Ausgangsmaterial 17 wurde durch Zusatz von Methanol eluiert. Das unreine 18 wurde an einer Aluminiumoxidsäule mit Toluol:Essigester (15:1) als Laufmittel chromatographiert. Dabei konnten 81 mg reines 18 erhalten werden (33% der Theorie). Daneben konnten 70 mg 17 rückgewonnen werden.

IR $(CCl_4): 3\,070, 2\,985, 2\,965, 2\,865, 2\,790, 2\,720, 1\,718, 1\,604, 1\,585, 1\,490, 1\,465, 1\,450, 1\,375, 1\,360, (1\,340), 1\,314, 1\,270, 1\,250, 1\,220, 1\,175, 1\,160, 1\,135, 1\,110, 1\,100\,sh, 1\,070, 1\,055, 1\,047, 1\,025, 1\,010, 993, 960, 940, 928, 905, 893, 855, 835, 707, 685, 670.$

¹H-NMR (CDCl₃): $\delta = 8,05 \text{ ppm}$ (m) (2 H) und $\delta \cong 7,5 \text{ ppm}$ (m) (3 H) Aromaten-H; $\delta = 5,21 \text{ ppm}$ (m) (1 H) C—H (1); $\delta = 3,32 \text{ ppm}$ (m) (1 H) C—H (4'); $\delta \cong 2,4 \text{ ppm}$ (m) (1 H) C—H (6'); $\delta \cong 2,3 \text{ ppm}$ (m) (1 H) C—H (9a'); $\delta \cong 1,9 \text{ ppm}$ (m) (1 H) C—H (1"); $\delta = 2,0$ —1,1 ppm unaufgelöst (18 H); $\delta = 1,08 \text{ ppm}$ (d) J = 6 Hz (3 H) CH₃—C(6')—H; $\delta = 0.95 \text{ ppm}$ (m) (3 H) C—H (4).

 $\begin{array}{c} \mathrm{MS:} 343(2,5\%) \ M^+, 329 \ (3,5\%), \ 328 \ (14,5\%), \ 222 \ (1\%), \ 220 \ (2\%), \ 206 \ (3\%), \ 153 \\ (100\%), \ 138 \ (2\%), \ 136 \ (5\%), \ 124 \ (2,5\%), \ 122 \ (2\%), \ 119 \ (2,5\%), \ 117 \ (2,5\%), \ 105 \\ (8\%), \ 84 \ (2,5\%), \ 82 \ (3\%), \ 81 \ (2,5\%), \ 79 \ (1,5\%), \ 77 \ (6\%), \ 69 \ (4\%), \ 67 \ (6\%), \ 56 \\ (3,5\%), \ 55 \ (9\%), \ 41 \ (5,5\%), \ 28 \ (8\%). \end{array}$

Hochaufgelöstes Massenspektrum: Ber. 343,251¹. Gef. 343,250⁵.

Literatur

- ¹ S. R. Johns, J. A. Lamberton, A. A. Sioumis und H. Suares, Austr. J. Chem. **27**, 2025 (1974).
- ² W. A. Denne, J. Cryst. Mol. Struct. 3, 367 (1973).
- ³ E. X. Albuquerque, E. A. Barnard, T. H. Chiu, A. J. Lapa, J. O. Dolly, S.-E. Janssen, J. W. Daly und B. Witkop, Proc. Nat. Acad. Sci. (USA) **70**, 949 (1973); A. T. Eldefrawi, M. E. Eldefrawi, E. X. Albuquerque, A. C. Oliveira, N. Mansour, M. Adler, J. W. Daly, G. B. Brown, W. Burgermeister und B. Witkop, Proc. Nat. Acad. Sci. (USA) **74**, 2172 (1977).
- ⁴ W. Burgermeister, W. L. Klein, M. Nirenberg und B. Witkop, Molecular Pharmacology 14, 751 (1978).
- ⁵ Die Synthese des Dihydroadalin wird im Rahmen der Synthese des (\pm) -Adalin in Kürze publiziert.
- ⁶ H. Booth, J. H. Little und J. Feeney, Tetrahedron 24, 279 (1967); R. R. Fraser, T. Grindley und S. Passananti, Canad. J. Chem. 53, 2475 (1975); K. Fuji, K. Ichikawa und E. Fujita, Tetrahedron Lett. 1979, 361.
- ⁷ J. J. Tufariello, Sk. Asrof Ali, Tetrahedron Lett. 1978, 4647.
- ⁸ O. Mitsunobu und M. Eguchi, Bull. Chem. Soc. Jpn. 44, 3427 (1971); O. Mitsunobu und M. Yamada, Bull. Chem. Soc. Jpn. 40, 2380 (1967); A. K.

Bose, Bansi Lal, W. A. Hoffman III und M. S. Manhas, Tetrahedron Lett. 1973, 1619; H. Loibner und E. Zbiral, Helv. Chim. Acta 59, 2100 (1976).

- ⁹ C. A. Grob und P. W. Schiess, Angew. Chem. 79, 1 (1967); C. A. Grob, Angew. Chem. 81, 543 (1969).
- ¹⁰ J. J. Tufariello und J. J. Tegeler, Tetrahedron Lett. 1976, 4037.
- ¹¹ E. Gössinger, R. Imhof und H. Wehrli, Helv. Chim. Acta 58, 96 (1975).
- ¹² R. Huisgen, H. Seidl und I. Brüning, Chem. Ber. **102**, 1102 (1969).
 ¹³ E. J. Corey und A. Venkateswarlu, J. Amer. Chem. Soc. **94**, 6190 (1972).
- ¹⁴ W. Oppolzer, M. Petrzilka, J. Amer. Chem. Soc. 98, 6722 (1976).
- ¹⁵ F. Bohlmann, Angew. Chem. 69, 641 (1957); T. A. Crabb, R. F. Newton und D. Jackson, Chem. Rev. 71, 109 (1971).